- Vom griechischen Philosoph und Mathematiker Eratosthenes von Kyrene (3. Jahrhundert v. Chr.) ist ein Verfahren überliefert, Primzahlen bis zu einer beliebigen Grenze schnell zu finden.
- Das Verfahren ist bekannt als "Sieb des Eratosthenes" oder "Zahlensieb".

- Idee: Wir stellen zuerst eine Liste aller ganzen Zahlen von 2 bis zur gewünschten Obergrenze auf.
- Man streicht alle Vielfachen von 2, lässt die 2 selbst aber stehen – sie ist die erste Primzahl.
- Die Vielfachen von 2 können keine Primzahlen sein sie sind ja durch 2 teilbar.

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

	2	3	5)	7	9	
11		13	1	5	17	19	
21		23	2	5	27	29	
31		33	3	5	37	39	
41		43	4	5	47	49	
51		53	5	5	57	59	
61		63	6	5	67	69	
71		73	7	5	77	79	
81		83	8	5	87	89	
91		93	9	5	97	99	

- Die nächste noch nicht durchgestrichene Zahl (die 3) ist die nächste Primzahl.
- Wir streichen auch alle Vielfachen der 3.
- Das Verfahren wiederholen wir, bis wir am Ende des Felds angekommen sind.
- Alle jetzt noch übrigen Zahlen sind Primzahlen.

	2	3	5	7		
11		13		17	19	
		23	25		29	
31			35	37		
41		43		47	49	
		53	55		59	
61			65	67		
71		73		77	79	
		83	85		89	
91			95	97		

	2	3	5	7		
11		13		17	19	
		23			29	
31				37		
41		43		47	49	
		53			59	
61				67		
71		73		77	79	
		83			89	
91				97		

	2	3	5	7		
11		13		17	19	
		23			29	
31				37		
41		43		47		
		53			59	
61				67		
71		73			79	
		83			89	
				97		

	2	3	5	7		
11		13		17	19	
		23			29	
31				37		
41		43		47		
		53			59	
61				67		
71		73			79	
		83			89	
				97		

- Wie modelliert man das Sieb?
 - Ein Array aus **boolean**-Werten ist ausreichend.
 - Wir legen fest, dass true für "Primzahl" steht und false für "keine Primzahl". Umgekehrt ginge es aber genauso gut.
 - Wenn also z.B. sieb[9] den Wert true hat, bedeutet das, dass wir die 9 für eine Primzahl halten.

Wie modelliert man das Sieb?

- Beim Erstellen des Zahlensieb-Objekts geben wir an, bis zu welcher Obergrenze wir Primzahlen suchen wollen.
- Wenn die Obergrenze 100 sein soll, wie groß sollte unser Array dann sinnvollerweise sein?
 - Prinzipiell würden 99 Elemente reichen, von 2 bis 100.
 - Wenn man das Verfahren <u>effizient</u> implementieren will, könnte man sogar nur die ungeraden Zahlen speichern, d.h. sieb[0] entspricht der 3, sieb[1] der 5 usw.
 - Vom <u>didaktischen</u> Standpunkt her ist es aber

```
Erste Version:

 public class Zahlensieb

boolean[] sieb;
public Zahlensieb(int grenze)
  sieb = new boolean[grenze+1];
  sieb[0] = false;
  sieb[1] = false;
  for (int i = 2; i \le grenze; i++)
```