


## **Mealy-Automaten**

1)

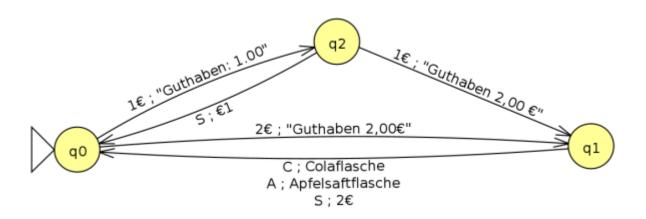
Die sogenannten **Mealy-Automaten** können in jedem Schritt außer der Änderung des internen Zustands auch eine **Ausgabe** erzeugen und erlauben damit die Modellierung z.B. von Getränke-, Fahrkarten- oder ähnlichen Automaten, die wir aus unserer Umwelt kennen.

Als Beispiel soll ein Getränkeautomat dienen, der...

- ... die Tasten A, C und S hat (für Apfelsaft, Cola und Stop)
- ... 1EUR- und 2EUR-Münzen annimmt.

Damit ist sein **Eingabealphabet**  $\Sigma = \{c, a, s, 1, 2\}$ . Anders als ein DEA bewirkt bei einem Mealy-Automaten jede Eingabe eine Ausgabe, das **Ausgabealphabet**  $\Delta = \{\text{"Guthaben } 1 \in \text{", "Guthaben } 2 \in \text{", "I} \in \text{", "Apfelsaftflasche", "Colaflasche"}\}$ 

Eine Mealy-Maschine oder ein **Mealy-Automat** ist durch ein 6-Tupel M =  $(Q, \Sigma, \Delta, \delta, \lambda, q_0)$  definiert.


Die verwendeten Symbole haben folgende Bedeutungen:



- Q: endliche Menge der Zustände<br>
- Σ: Eingabealphabet<br>
- Δ: Ausgabealphabet<br>
- δ: totale Überführungsfunktion Q x Σ → Q
- $\lambda$ : totale Ausgabefunktion Q x  $\Sigma \rightarrow \Delta$
- q0: Anfangszustand, q0 ∈ Q

Die Maschine erzeugt in jedem Übergang eine Ausgabe.

Die Überführungsfunktion  $\delta$  und die Ausgabefunktion  $\lambda$  können wie beim DEA auch, in einem **Übergangsgrgraphen** dargestellt werden. Ein passender **Übergangs-** oder **Transitionsgraph** sieht folgendermaßen aus:



Anders als beim DEA muss zu jedem Übergang außer der Eingabe auch die Ausgabe notiert werden, dies geschieht für gewöhnlich durch ein Trennzeichen wie ; oder /.

Der Automat befindet sich immer in genau einem der Zustände und beginnt dabei immer im so genannten **Startzustand**, der mit einem zusätzlichen Pfeil gekennzeichnet wird (hier q0).

Jede Eingabe bewirkt einen Übergang (auch Transition genannt) zu einem anderen Zustand, dargestellt durch einen Pfeil.



Bei Mealy-Automaten gehört zu einem Übergang auch eine Ausgabe.

Vom Startzustand q0 aus wird durch Einwurf von 1€ der Zustand q2 erreicht und die Ausgabe Guthaben: 1,00 erzeugt.



## (A1)

Baue den Getränkeautomaten in FLACI auf und teste ihn in der Simulation.

- Erzeuge einen neuen Mealy-Automaten
- ullet Schalte im Reiter Definition die Option für  $\delta$  und  $\lambda$  als partielle Funktionen an
- Definiere im Reiter Alphabet das Eigabe- und das Ausgabealphabet
- Überführe den Übergangsgraphen von oben nach FLACI
- Simuliere Eingaben

Welche Funktion hat die Option  $\delta$  und  $\lambda$  als partielle Funktionen, was verändert sich wenn

https://www.info-bw.de/ Printed on 04.08.2025 02:57

man diese Option deaktiviert.

Und wie bei DEAs kann man die Übergangsfunktion  $\delta$  und die Ausgabefunktion  $\lambda$  auch hier als **Übergangsmatrix/Übergangstabelle** darstellen, anstelle des Übergangsgraphen. Wie bei den DEAs gilt: Im Graph kann man den Fehlerzustand der Übersichtlichkeit wegen weglassen, in der Übergangsmatrix wird dieser stets angegeben.

|                 | Eingaben → (Folgezustand / Ausgabe) |    |    |   |   |
|-----------------|-------------------------------------|----|----|---|---|
| Ausgangszustand | 1€                                  | 2€ | С  | a | S |
| q0              |                                     |    |    |   |   |
| q1              |                                     |    |    |   |   |
| q2              |                                     |    |    |   |   |
| qF              |                                     |    | qF |   |   |
| 1)              |                                     |    |    |   |   |

Diese Wiki-Seite basiert auf Material der ZPG INformatik/BW und steht unter einer CC-BY-NC-SA Lizenz. Als Autoren sind angegeben "Dietrich, Lautebach (2020)".

From:

https://www.info-bw.de/ -

Permanent link:

https://www.info-bw.de/faecher:informatik:oberstufe:automaten:mealy:start?rev=1653981634

Last update: **31.05.2022 07:20** 

