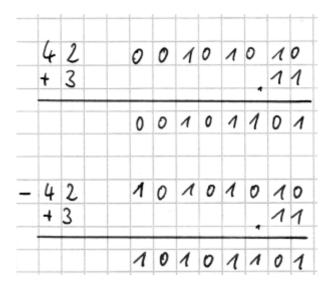
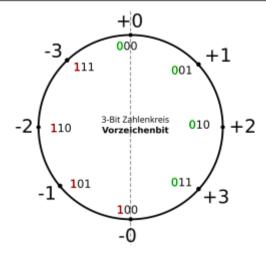
Ganze Zahlen Z

In Informatiksystemen ist es auch nötig, mit negativen Zahlen zu arbeiten. So kann man eine Subtraktion als Addition der Gegenzahl auffassen: 11-6 = 11+(-6) - es vereinfacht also vieles, wenn man weiß, wie man diese Gegenzahlen finden kann. **Aber wie kann man negative Zahlen im Binärsystem darstellen?**

Vorzeichenbit

Ein erster Gedanke: Man könnte einfach das Bit ganz links als "Vorzeichenbit" verwenden.


- \bullet +42₁₀ = 00101010₂
- \bullet -42₁₀ = 10101010₂

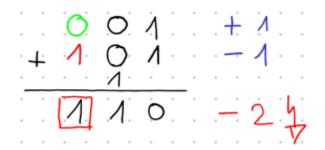

(A1)

Verwende die binäre Darstellung für +42 und -42 von oben und addiere schriftlich (im Binärsystem) jeweils die Zahl 3_{10} =011 $_2$. Erläutere anhand dieses Beispiels, warum die Darstellung mit einem "Vorzeichenbit" problematisch ist.

Hinweis

Wenn man sich auf eine festgelegte Stellenzahl beschränkt, kann man sich die Darstellung ganzer Zahlen im Binärsystem an einem "**Zahlenkreis**" veranschaulichen. Für Zahlen mit einer Länge von 3Bit sieht dieser so aus:

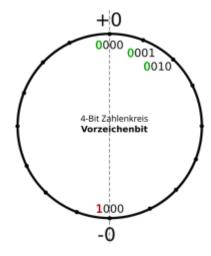
Man kann hier schön sehen, dass man mit drei Bit alle Zahlen von -3 bis +3 darstellen kann.


(A2)

- Kannst du am Zahlenkreis weitere Probleme der Darstellung negativer Zahlen mit einem Vorzeichenbit erkennen?
- Berechne +1 + (-1) in der aus dem Kreis entnommenen Binärdarstellung. Erkennst du ein Problem.
- Zeichne den Zahlenkreis für 4Bit lange Binärzahlen. Welchen Wertebereich kann man hier abdecken?
- Formuliere stichwortartig eine kurze Zusammenfassung zur Darstellung negativer Zahlen mit dem Vorzeichenbit siehst du Vorteile? Siehst du Nachteile? Ist das eine gute Darstellungsmöglichkeit?

Hinweis "weiteres Problem":

Woran liegt es, dass man statt der üblichen 8 Zahlen, die man mit 3Bit darstellen kann nur 7 Zahlen darstellen kann?


Lösung Rechung

https://www.info-bw.de/ Printed on 18.02.2025 00:06

Hinweis: Zahlenkreis 4Bit

Du kannst dich an folgendem, teilweise ausgefüllten Kreis orientieren:

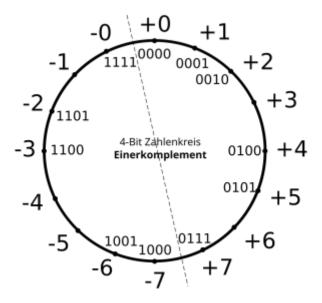
Komplementdarstellungen

Um die verheerende Rechenschwäche des Vorzeichenbits zu beheben, haben sich **Komplementdarstellungen** für negative Zahlen etabliert.

Um das "Komplement" einer binären Zahl zu bilden, werden an allen Stellen 1 und 0 vertauscht.

Dies hat den Vorteil, dass Rechenoperationen wie z.B. die Addition in beiden Zahlenbereichen funktionieren.

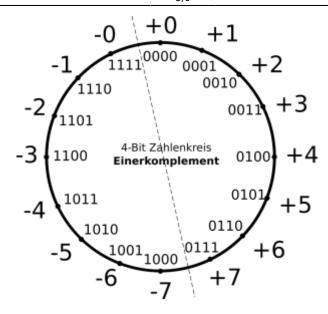
Einerkomplement


Eine negative Zahl im Dezimalsystem wird bei der **Einerkomplement**-Darstellung zunächst als Betrag in eine Binärzahl umgewandelt und dann das Komplement gebildet. Negative Zahlen beginnen dabei stets mit einer 1, d.h. man muss evtl. links eine oder mehrere 0-en anfügen, um bei der Komplementbildung die "Vorzeichen-Eins" zu erhalten.

Beispiel

- Wenn man -6_{10} im Einerkomplement darstellen möchte, ermittelt man zunächst die Binärdarstellung von $+6_{10}$ = 110_2
- Nun fügt man links eine weitere 0 an: 0110_2 diese Verändert zunächst nichts am Zahlenwert, schafft aber Platz für eine weitere Stelle für das Vorzeichen.
- Abschließend bildet man das Komplement und erhält die Einerkomplementdarstellung für -6₁₀=1001₂.

(A3)


Auch die Einerkomplementdarstellung kann man sich an einem Zahlenkreis veranschaulichen - für Binärzahlen der Länge 4 Bit sieht der (unvollständige) Zahlenkreis so aus:

- Vervollständige den Zahlenkreis.
- Berechne schriftlich im Binärsystem -5 + 2.
- Berechne schriftlich im Binärsystem -5 + 6.
- Bestimme die Einerkomplementdarstellung von 0000₂
- Woran kann man bei der Darstellung im Einerkomplement negative Binärzahlen erkennen?
- Welche Folgerungen ziehst du aus den Ergebnissen dieser Aufgabe?

Lösung: Zahlenkreis

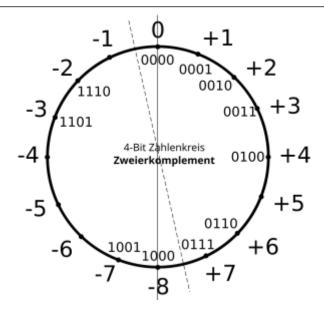
https://www.info-bw.de/ Printed on 18.02.2025 00:06

Lösungen: Rechnungen

Zweierkomplement

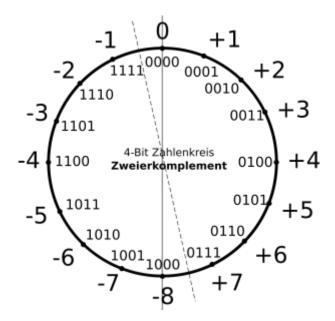
Die Idee des ZK ist es, jeweils das Bit mit der höchsten Wertigkeit als negativen Wert zu definieren. Ein Beispiel anhand eines 8-Bit-Wertes:

Stelle	7	6	5	4	3	2	1	0
Wertigkeit 2er-Potenz	-2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2°
Wertigkeit dezimal	-128	64	32	16	8	4	2	1



(A4)

Die Tabelle oben sieht für Binärzahlen der Länge 4 Bit so aus:

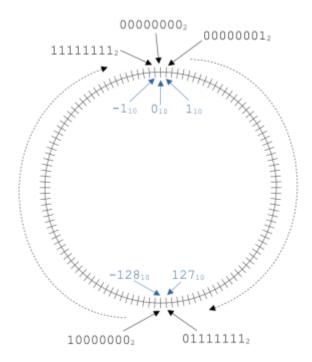

	_	2		_
Wertigkeit 2er-Potenz	-2 ³	2 ²	2 ¹	2°
Wertigkeit dezimal	-8	4	2	1

Der Zahlenkreis sieht für 4 Bit Binärzahlen im Zweierkomplement (unvollständig) so aus:

- Vervollständige den Zahlenkreis
- Kannst du ein allgemeines Vorgehen formulieren, wie man aus einer positiven Binärzahl \$z\$ die negative Binärzahl \$-z\$ in der Zweierkomplementdarstellung erhalten kann?

Lösung Zahlenkreis

Hinweis Vorgehen


Betrachte die Zahlen im Zahlenkreis - was muss man machen, um aus dem einfachen Komplement einer Zahl die Zweierkomplementdarstellung ihrer Gegenzahl zu erhalten?

Printed on 18.02.2025 00:06 https://www.info-bw.de/

(A5)

Das folgende Bild zeigt den Zahlenkreis für 8Bit-Binärzahlen im Zweierkomplement:

- Welcher Zahlbereich lässt sich im Zweierkomplement mit 8 Bit darstellen?
- Welcher Zahlbereich lässt sich im Zweierkomplement mit n Bit darstellen?
- Rechne um die Binärzahlen sind im Zweierkomplement gegeben:
 - \circ 10101010₂ = ?? ₁₀
 - \circ 11110000₂ = ?? ₁₀
 - \circ -98₁₀ = ?? ₂
 - \circ -3₁₀ = ?? ₂
 - Wie kann man anhand einer Binärzahl im Zweierkomplement erkennen, ob diese positiv oder negativ ist?
- Verwende die Zweierkomplementdarstellung:
 - ∘ Berechne schriftlich im Binärsystem -5 + 2.
 - ∘ Berechne schriftlich im Binärsystem –5 + 6.

Lösung: Umrechungen

$$\frac{1}{1} \circ \cancel{0} \circ \cancel{0} \circ \cancel{0} \circ \cancel{0} \circ \cancel{0}$$

$$-128 + 32 + 8 + 2 = -86_{10}$$

$$-128 + 64 + 32 + 16 = -16_{10}$$

$$-98_{10} = -128 + 30$$

$$-3_{10} = -128 + 125$$

$$30_{10} = 0011110_{2}$$

$$125_{10} = 111101$$

$$78_{10} = 111101$$

$$-128 + 30 = -38_{10}$$

Lösung: Addition

Prima Sache!

Mithilfe des sogenannten **Zweierkomplements** lassen sich ganze Zahlen – auch negative – als Binärzahlen so darstellen, **dass alle Rechenregeln wie bislang funktionieren**.

Vorgehen

Wenn die Zahl \$z\$ als Binärzahl gegeben ist, erhält man \$-z\$ in Zweierkomplementdarstellung, indem man erst alle Bits invertiert und zum Ergebnis dieser Operation 1 addiert.

https://www.info-bw.de/ Printed on 18.02.2025 00:06

Beispiel: 3_{10} =0011₂. man erhält -3 im Zweierkomplement, indem man zunächst alle Stellen der Binärzahl invertiert: 1100_2 . Dann addiert man 1: 1101_2 =-8+4+1=-3.

Material

2023-10-25_15-49.png	25.6 KiB 25.10.2023 13:50
3bit-vorzeichenbit.svg	17.8 KiB 25.10.2023 12:59
3bit_vorzeichenbit.png	68.7 KiB 25.10.2023 12:59
4b_einerkomplement_unvoll.png	88.3 KiB 25.10.2023 14:39
4b_zweierkomplement_unvoll.png	90.5 KiB 25.10.2023 14:39
4bit_vorzeichenbit_leer.png	60.5 KiB 25.10.2023 13:32
einerkomplement.png	81.9 KiB 25.10.2023 14:26
ganzezahlen_binaer.odp	136.0 KiB 14.09.2022 14:19
ganzezahlen_binaer.pdf	132.8 KiB 14.09.2022 14:19
rech2k.png	60.3 KiB 25.10.2023 15:14
umr_2k.png	137.9 KiB 25.10.2023 15:14
vorzeichenbit.png	229.4 KiB 12.09.2022 18:49
zkkreis.png	79.0 KiB 12.09.2022 19:30
zweierkomplement.png	84.3 KiB 25.10.2023 14:25

Diese Seite entstand unter Verwendung von Ideen und Material von D. Zechnall.

From:

https://www.info-bw.de/ -

Permanent link:

 $https://www.info-bw.de/faecher: informatik: oberstufe: codierung: zahlendarstellungen: ganze_zahlen: startungen: ganze_zahlen: gan$

Last update: **25.10.2023 15:15**

