05.08.2025 03:15 1/2 Übungen

Übungen

(A1)

Gegeben ist ein KV-Diagramm für eine logische Funktion f: Gib die minimale disjunktive Normalform für die Funktion f an.

f		x0 x1			
		00	01	11	10
x2	0	1	1	1	1
	1	0	0	1	0

(A2)

Minimiere den folgenden boolschen Term mithilfe eines KV-Diagramms und vereinfachen, wenn möglich, das Ergebnis:

 $X = (A_{\Lambda} \neg B_{\Lambda} C_{\Lambda} D) \lor (A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} D) \lor (A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A$

(A3)

- Bestimme eine weitestmöglich vereinfachte Form des folgenden booleschen Terms: Av¬ (¬ΒΛC)ΛC
- Überführe den vereinfachten booleschen Term in ein Schaltbild.

Last update: 29.04.2024 faecher:informatik:oberstufe:techinf:formale_logik:uebungen:start.https://www.info-bw.de/faecher:informatik:oberstufe:techinf:formale_logik:uebungen:start?rev=1714379298 08:28

From:

https://www.info-bw.de/ -

Permanent link:

https://www.info-bw.de/faecher:informatik:oberstufe:techinf:formale_logik:uebungen:start?rev=1714379298

Last update: 29.04.2024 08:28

Printed on 05.08.2025 03:15 https://www.info-bw.de/