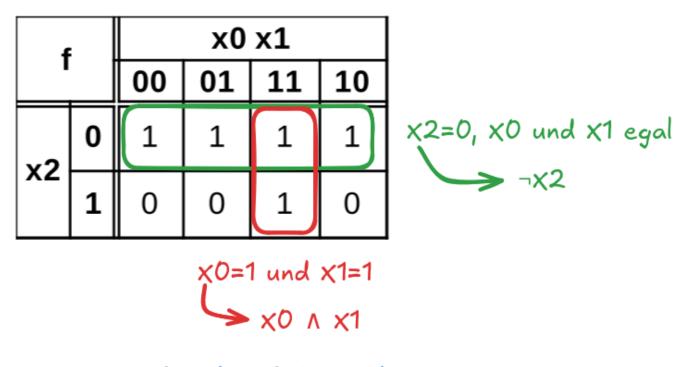
05.08.2025 03:15 1/3 Übungen

Übungen

(A1)

Gegeben ist ein KV-Diagramm für eine logische Funktion f: Gib die minimale disjunktive Normalform für die Funktion f an.

f		x0 x1				
		00	01	11	10	
v2	0	1	1	1	1	
x2	1	0	0	1	0	


Hifestellung 1 - Bereiche

f		x0 x1				
		00	01	11	10	
v2	0	1	1	1	1	
x2	1	0	0	1	0	

Hilfestellung 2 - Bereiche mit verbaler Bechreibung

f		x0 x1				
<u>'</u>		00	01	11	10	
x2	0	1	1	1	1	x2=0, x0 und x1 egal
XZ	1	0	0	1	0	
x0=1 und x1=1						

Lösungsvorschlag

Insgesamt: $(\neg x2) \lor (x0 \land x1)$

(A2)

Minimiere den folgenden boolschen Term mithilfe eines KV-Diagramms und vereinfache, wenn möglich, das Ergebnis:

https://www.info-bw.de/ Printed on 05.08.2025 03:15

05.08.2025 03:15 3/3 Übungen

 $X = (A_{\Lambda} \neg B_{\Lambda} C_{\Lambda} D) \lor (A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} D) \lor (A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A_{\Lambda} \neg B_{\Lambda} \neg C_{\Lambda} \neg D) \lor (\neg A$

Wahrheitstabelle

Bei dem dargestellten Term handelt es sich um die kanonische DNF einer logischen Funktion - man kann die Zeilen mit dem Funktionswert 1 also direkt ablesen, in dem man die Variablen ohne "not" als 1 notiert, die mit "not" als 0:

Wahrheitstabelle – Zeilen mit 1

Α	В	С	D	Х
1	0	1	1	1
1	0	0	1	1
1	0	1	0	1
1	0	0	0	1
0	0	0	0	1
0	0	1	0	1

(A3)

- Bestimme eine weitestmöglich vereinfachte Form des folgenden booleschen Terms: Av¬ (¬ΒΛC)ΛC
- Überführe den vereinfachten booleschen Term in ein Schaltbild.

From:

https://www.info-bw.de/ -

Permanent link:

Last update: 26.09.2024 07:51

